
Evaluation of Program Specification and Verification

Tools for High Assurance Development

Sonali Ubhayakar David Bibighaus George Dinolt Tim Levin
First author's affiliation Naval Postgraduate School Naval Postgraduate School Naval Postgraduate School

1st line of address 833 Dyer Rd. Mail Code: CS/ Mail Code: CS/

2nd line of address Spanagel Hall Rm. 401 Department of CS Department of CS

Last line, including country Monterey, CA 93943 USA Monterey, CA 93943 USA Monterey, CA 93943 USA

+1 +1 831 641 9391 +1 831 656 3889 +1 831 656 2239

1st author's email address bibighaus@acm.org gwdinolt@nps.navy.mil televin@nps.navy.mil

ABSTRACT

A key decision in the development of high assurance

software is that of choosing a formal methods tool. This

paper describes a methodology to select a formal methods

tool for use in the development of high assurance software.

Some of the factors that make a tool suitable to the task can

be evaluated with a desk check, while others can only be

appreciated by “hands on” testing. We describe the

application of our methodology to a broad set of currently

available formal methods tools, including a hands-on

evaluation of one of the tools. The impact of the tools on

the project development is also discussed.

Keywords

Formal specification, formal methods, high assurance

1 INTRODUCTION

A distinguishing feature of high assurance systems is that

they are modeled mathematically using formal methods.

This modeling enables formal reasoning about the system

design, that can be used to prove that the system has certain

properties. The model also assists in the verification of the

code since all code must be shown to be an instance of a

part of the model.

A key consideration in the design of high assurance

systems is the choice of the software used to assist in the

formal modeling. The question arises as to how to choose a

tool to assist in the formal methods and on what factors

should that decision be based. This paper describes an

effort to identify discriminators that will allow practitioners

to find the best fit of formal tools for a project.

Statement of Need

There are over a dozen freely available formal method tools

that that can assist with formal methods of software design.

Many of these were compared in an initial survey. The

survey included ACL2, AutoFOCUS, Coq, Elf/Twelf,

IMPS, HOL, Isabelle, Nuprl, Otter, PVS, SpecWare, STeP,

TAME, TPS, Maude, Vienna and Z/Eves.

This study [7] was conducted at the Center for INFOSEC

Studies and Research (CISR) at the Naval Postgraduate

School, as part of the TCX project. [4] The goal of this

project is to develop a high assurance separation kernel that

can be evaluated under the Common Criteria at EAL-7. It is

the hope of CISR that the code and supporting development

documentation can be used as a concrete example for

others in the development of high assurance systems. This

project will be done using a spiral development method.

Thus the need was for a tool that would assist in the

expression and validation of security properties. This tool

must be easily obtainable and freely available so that

reviewers can understand the role of formal methods in the

development of high assurance systems.

2 METHODOLOGY

We developed a two-phase methodology for evaluating

formal methods tools. The first phase is to conduct a desk

check of the tools against a set of functional criteria or

requirements. These requirements are used to determine a

smaller set of tools that can be compared in-depth. The

second phase, the in-depth evaluation, is to conduct a

hands-on trial of the remaining tools. Each tool is used to

specify and prove the security characteristics of a simple

security model.

Evaluation Criteria

Before the evaluation began, a list of criteria was identified

to evaluate the tools. While developing the set of criteria, it

became apparent that some of the criteria could only be

evaluated by using the tool. These criteria would be the

basis for evaluation during the “hand’s on” phase. Table 1

summarizes the criteria used to evaluate the tools and the

phases in which the criteria were examined.

3 SURVEY PHASE

A large effort was undertaken to compare the tools against

the criteria. In the course of conducting the survey, we

found that several of the criteria were more effective in

distinguishing among the tools.

Some of the criteria appeared useful in establishing

minimum functional requirements, but proved to be of

little, if any, value in discriminating one tool from another,

since all of the surveyed tools met these basic standards.

For example, Resource Requirements and Implementation

Language did not prove useful in reducing our tool set. All

of the tools evaluated ran on at least one of the popular

operating systems and used a well-known and common

implementation language.

Factors that were useful in discriminating one tool from

another in the survey phase were further divided into

primary and secondary groups. The primary discriminators

are Support, Maturity, Expressiveness and Purpose; the

remaining factors are deemed “secondary.” The rational

for this division was that, since our project was focused on

developing very high assurance software, the correctness of

the proofs was paramount and therefore it would be unwise

to choose an immature tool that had not been thoroughly

scrutinized for potential errors in its internal logic. Since

the ultimate purpose of the TCX project was not to

advertise a tool, but rather to construct software, the

availability of supporting documentation was critical.

Expressiveness was desirable to support the maintainability

of the specifications and the mapping of them to actual

code. Finally, we sought tools that were developed as

general-purpose theorem provers since they were the most

flexible and imposed the fewest restrictions on

development.

Survey Conclusions

Out of the sixteen tools surveyed, two were selected for an

in-depth analysis for their suitability to our project. The

two tools were ACL2 and PVS. A comparison of the two

tools follows in Table 2.

4 HANDS ON PHASE

One of the major goals of the TCX project is to show, with

high assurance, how an abstract security policy is

implemented in the software and hardware. To achieve

this, we plan to use the following approach:

A model of the security policy is created using a

formal specification language. At this level, the

model is checked for internal consistency and for

its ability to capture the salient properties of the

security policy. The model of the security policy

then is “refined” to capture more details of the

implementation. This refinement is often called an

FTLS (Formal Top Level Specification). The

refinement should be expressible in the terms of

the specification language, there should be support

for the mapping between the refined specification

and the security policy and there should be support

for proving that the refined specification is

consistent with the security policy and does not

implement anything that would “violate” the

properties of the model.

Having narrowed down the field of tools, it is possible to

begin using the tools to determine their applicability to the

project. For the tool to support our approach, it should be

Evaluation Criteria Qualifications

Maturity Ideal tool should be mature enough to be trusted, and actively supported.

Documentation Ideal tool should have a large body of resources and documentation.

Purpose Tool must be able to reason about security properties. Examples of using the tool in

a software development process must exist.

Implementation Language Ideal tool will use a language to describe the model that is portable and “well

known” with ample documentation

Resource Requirements Tool should run on either Windows or a version of Unix (Linux, Solaris, OS X.).

Ideal tool will work on multiple platforms.

Expressiveness Tool must be able to express software properties and be able to prove that the

specification meets those properties.

User Interface Ideal tool should not require the memorization of a large body of commands. A

simple GUI is preferred.

Consistency of

Specification

Logic of the tool must be shown to be consistent. Tool must guarantee that a

specification is consistent ether by construction or by consistency checking.

S
u

rv
ey

 P
h

a
se

Executable Specification Ideal tool should allow a specification to be executed to demonstrate certain cases

and allow the developer to gain an interactive “feel” for the program

Multiple Levels of

Abstraction

Tool must support a “top down” design process where a specification can become

less abstract. Tool must support inter-level mapping or some other way of

demonstrating correct traceablility of requirements between levels.

“
H

a
n

d
s

O
n

”

P
h

a
se

User Friendliness Ideal tool should be useable without first acquiring a detailed understanding of the

mechanics of the tool.

Table 1: Evaluation Criteria

able to provide the mappings between the security model

and the FTLS.

Approach

The model we used is a simplified instance of the Bell and

LaPadula Model [1]. The top level represents the Security

Policy, and the second is a Formal Top-Level Specification.

The security policy describes a hypothetical state machine

with some basic state transitions. Within the machine there

are subjects (actors that use or manipulate data) and objects

(representing the data itself). Every subject and every

object had an associated security label. These labels do not

change and are ordered so that label a b, implies that a is

more sensitive than b. A real world example would be the

U.S. military labels Secret and TopSecret where TopSecret

 Secret. In plain English, the security policy states that a

subject cannot read an object unless the subject’s security

label is greater-than or equal-to the security label of the

object. Similarly, a subject can only write to an object if

the subject’s security label is equal to the security label of

the object.

The fundamental security property is that that the system is

in a secure state if and only if subjects can only access

objects in accordance with the policy described above. The

security theorem we need to prove is that if the system

starts in a secure state and only makes transitions according

to our restrictions then it will always be in a secure state.

This policy was chosen because it is well known, simple

enough that it can be proven easily and has enough

elements in it to provide a glimpse as to how well the tool

would support a more complicated policy.

The Security Policy states very few details about the

machine, subjects, objects, security labels or transitions.

The second level of the model, the Formal Top-Level

Specification describes some of these in more detail. The

Formal Top-Level Specification represents a particular

implementation of the security policy. The FTLS shows

the actions of the system including inputs, outputs and

effects (including errors). In the FTLS, we assign more

concrete descriptions to the elements of our policy.

Subjects, for example, are described as processes, while

objects are represented as memory blocks.

Implementation of the Model

We implemented the two-level model in PVS. PVS is a

Criteria ACL2

Adapted Common LISP 2

PVS

Prototype Verification System

Maturity Editors Kaufmann and Moore. Current

version 2.7 released in 2002. First version

developed in 1994. Based on the Boyer

Moore Theorem Prover that dates to the

1970’s.

Developed by SRI International

Current version 3.1 released in 2003. First

version developed in 1992.

Support Since ACL2 is a subset of Common LISP,

there is extensive supporting documentation

available

One of the oldest and best documented of the

theorem provers that is in use today.

Expressiveness Blends arithmetic decision procedures with

rewriting techniques. Uses first-order

quantifier-free logic. Has Powerful type-

like mechanism called “guards” that can be

used to ensure functions are well typed.

Logic is quantifier free semi-automatic and

uses lemmas as guidance. [3]

Supports classic higher-order logic with

functions, sets records, tuples, predicate sub-

types, dependent typing and theories. Axioms

may be introduced freely. Allows concise and

natural specifications as well as the ability to

generate human readable proofs [3][6]

P
ri

m
ar

y
 C

ri
te

ri
a

Purpose General purpose theorem prover General purpose theorem prover

User Interface Emacs Emacs with X window tools.

Consistency of

Specifications

Yes, through built-in interactive “proof

checker” [3]

Yes, Automated consistency checking of

specifications. Type checking system that

allows the use of arbitrary axioms during

development.

S
ec

o
n

d
ar

y

Executable

Specifications

Yes, unless there exist undefined functions. No

Resource

Requirements

Any environment that supports one of the

standard Common Lisp Implementations,

Unix, Linux, Windows, etc.

Sparc machines with Solaris 2 or greater and

x86 machines with Linux distributions

compatible with Redhat 5 or later.

N
o
n
- Implementation

Language

Untyped Common Lisp Allegro Common Lisp (Commercial Version of

the Language)

Table 2: Candidate Tools for In-Depth Evaluation

type-theoretic specification language. An element is of a

specific type if it satisfies some condition (for example a

being may be of type Human if it walks on two legs and

does not have fur). Type theory is similar to set theory in

many respects but differs primarily in the sense that two

sets are considered equal if every element is identical,

whereas stating the types of two elements are equal says

nothing about elements themselves but does describe their

structure [2]. A SubType is a type with additional

constraints imposed on the type (For example a Type Man

may be described as a predicate subtype of Human that

meets the additional predicate male(x)). Within PVS and

other type-theoretic proof checking systems, checking that

types are used appropriately becomes an important

obligation in the overall proof (for example, assuming a

proof exists that being a Man implies being mortal, proving

that Socrates is mortal is reduces to proving that Socrates

was of type Man). For our two level model, the primary

challenge of the inter-level mapping was type-checking that

the appropriate FTLS elements were a sub-type of the

Security Policy elements.

PVS provides three important features that were key to the

development of the specification: TYPE+, Sequences and

IMPORTING. The TYPE+ notation indicates that an

abstract type is non-empty, with no additional constraints

on it. Sequences are a type in PVS, and are used to talk

about series of events for inputs or outputs. The

IMPORTING clause allows the use of theories from other

(presumably higher level) specifications. Our

implementation made use of all of these items. After much

work, we were able to successfully implement our model

and prove the security properties. A summary of the

elements and their mapping is shown in Figure 1.

Figure 1: Intra-Level Mapping

Evaluation of the PVS Implementation of the Model

After specification and proof of the model, we were able to

draw several conclusions about PVS. The first was that the

specification could be written concisely. The use of higher

order logic and the type system enabled a specification that

followed the original model closely and was

comprehensible by a human reader. As is usual in any

system that has “strong” typing, it took a considerable

amount of effort to ensure that the various types had the

appropriate relationships with each other. The automated

type checking and the verification system were very useful

in identifying when there were mismatches and validating

the final results. For example, the type checking system

generated several proof obligations that were missed in the

initial construction of the specification; such as the fact that

Read _ Write and that Memory could not be empty.

One problem that was encountered was the use of the

IMPORTING clause. PVS currently does not allow

embedded assumptions in the importing parameter list.

This prevented automated generation and proving of some

of the Type-Checking obligations. Therefore the

assumptions at the Policy had to be repeated at the FTLS

level. This made the FTLS proof more complicated and

reduced the benefits of the layering.

Evaluation of ACL2

ACL2 is a subset of common LISP. The goal in the

construction of ACL2 was to retain the power of LISP

while removing the commands that introduced side

effects that could harm the integrity of proofs[5]. It

can be used not just as a specification or modeling

language but also as a programming language. ACL2

is based on set theory, however it attempts to derive

some of the benefits of a type-based system through

the concept of guards. A guard prevents a function

from accepting a parameter unless it meets a

condition.
We have yet to implement the

demonstration security model and

FTLS in ACL2. We will be able to do

a more complete analysis after that has

been completed. It appears that since

ACL2 is not strongly typed, it may

require more effort than PVS to

express the same concepts. A

simplified proof process may offset

this additional effort[8]. Finally,

ACL2’s logic provides several

automatic proof techniques. The style

of these proofs is very robust and

dramatic changes to the specification

may not imply a dramatic change to the proof.

5 CONCLUSIONS

The selection of a formal methods tool is an important

decision in the development of a high assurance system.

We have defined a useful methodology for the assessment

of formal methods tools. Included in this methodology is a

set of evaluation criteria, or requirements. Several factors

must be considered including the system’s maturity,

Subject

Formal Top Level Specification

Formal Security Policy Model

ProcessID

Object

MemBlock

slSubject

(Security

Label)

slPr

(Process

Label)

slObject

(Security

Label)

slMemBlock

(Memory

Label)

Action

Action

AddIt Del NoOp

AddIt Del NoOp

Mode

Mode

Rd Wr

Rd Wr

support, expressiveness and multi-level mapping. While

several tools may meet the general requirements,

differences in the foundational logic will greatly shape how

the specification is developed, how the theories are proved

and how the specifications are layered, and will thus effect

the overall assessment of a given tool.

REFERENCES

1. Bell, D.E. and LaPadula, L.J. Secure Computer

Systems: Mathematical Foundations and Model. M74-

244, The MITRE Corp., Bedford MA, May 1973.

2. Constable R. L., Allen S. F., Bromley H. M.,

Cleaveland W. R., Cremer J. F., Harper R. W., Howe D.

J., Knoblock T. B., Mendler N. P., Panangaden P.,

Sasaki J. T., Smith S. F. Implementing Mathematics

with The Nuprl Proof Development System. Cornell

University Ithaca NY, 1986.

3. Kolhase, M. Database of Existing Mechanized

R e a s o n i n g S y s t e m s . < h t t p : / / w w w -

formal.stanford.edu/clt/ARD/systems.html>. June 1999.

4. Irvine, Cynthia E., Levin, Timothy E., Dinolt, George

W. “HASP Trusted Computing Exemplar”, Naval

Postgraduate School Technical Report NPS-CS-02-004,

September 2002.

5. Moore and Kaufmann. ACL2 Version 2.7 Homepage.

<www.cs.utexas.edu/users/moore/acl2/acl2-doc.html>.

6. SRI International. PVS Homepage. <pvs.csl.sri.com>.

7. Ubhayakar, S. Evaluation of Program Specification and

Verification Systems. Masters Thesis, Naval

Postgraduate School, Monterey, California June 2003.

8. Young, William Comparing Verification Systems:

I n t e r a c t i v e C o n s i s t e n c y i n A C L 2 .

<www.cs.utexas.edu/users/moore/publications/others/in

teractive-consistency-young.ps> 1996.

9. Zhang, Wenhui. Evaluation of Verification Tools

<www.ifi.uio.np/~adapt/adapt-ft-05.ps.gz>

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

